

Date Planned : / /	Daily Tutorial Sheet - 13	Expected Duration : 90 Min
Actual Date of Attempt : / /	Level - 3	Exact Duration :

148. In ψ_{321} the sum of orbital angular momentum, spherical modes and angular node is:

(A)
$$\frac{\sqrt{6}h + 4\pi}{2\pi}$$
 (B) $\frac{\sqrt{6}h}{2\pi} + 3$ (C) $\frac{\sqrt{6}h + 2\pi}{2\pi}$ (D) $\frac{\sqrt{6}h + 8\pi}{2\pi}$

*149. Which sets of quantum no. are consistent with the theory?

(A)
$$n = 2$$
, $l = 1$, $m = 0$, $s = -\frac{1}{2}$ (B) $n = 4$, $l = 3$, $m = -2$, $s = -\frac{1}{2}$ (C) $n = 3$, $l = 2$, $m = -3$, $s = +\frac{1}{2}$ (D) $n = 4$, $l = 3$, $m = -3$, $s = +\frac{1}{2}$

150. The energies E_1 and E_2 of two radiations are 25eV and 50eV respectively. The relation between their wavelengths i.e. λ_1 and λ_2 will be:

(A)
$$\lambda_1 = \frac{1}{2}\lambda_2$$
 (B) $\lambda_1 = \lambda_2$ (C) $\lambda_1 = 2\lambda_2$ (D) $\lambda_1 = 4\lambda_2$

*151. The probability of finding the electron in p_x -orbital is:

(A) maximum on two opposite sides of the nucleus along x-axis

(B) zero at the nucleus

(C) same on all the side around the nucleus

(D) zero on the z-axis

*152. Which statements concerning light are true?

(A) it is a form of energy
(B) it can be deflected by a magnet
(C) it consists of photons of same energy
(D) it is part of electromagnetic spectrum

*153. Which statements concerning Bohr's model are true?

(A) predicts that probability of electron near nucleus is more

(B) angular momentum of electron is given by = $\frac{\text{nh}}{2\pi}$

(C) introduces the idea of stationary states

(D) explains line spectrum of hydrogen